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Abstract

We study the possibility of defining tangent vectors to a metric space at a given point and tangent maps to applications from
a metric space into another metric space. Such infinitesimal concepts may help in analysing situations in which no obvious
differentiable structure is at hand. Some examples are presented; our interest arises from hyperspaces in particular. Our approach
is simple and relies on the selection of appropriate curves. Comparisons with other notions are briefly pointed out.
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1. Introduction

The essence of mathematics consists in dropping the numerous peculiarities of practical situations in order to
delineate simple models. The successes of such a method are numerous. They often require some effort and some
acceptance of abstractions. It is only after various attempts and some use that these abstract concepts become as
natural as the notions of group or normed vector spaces or differentiable manifolds.

Many incentives have led mathematicians to study spaces which have no differentiable structure, but on which some
calculus can be performed; see [2–6,18,20,22,33,39–42,51,62]. Among the fields which require such generalizations
are the following topics: differential equations [27,32,34], duality [51,55]..., evolution of domains [1,5,6,58,
59], geometry [13,15,17,18,35–37,42,44], image reconstruction [30,48,50], mechanics [43,52–54], morphogenesis
[5], nonlinear analysis and optimization [2,19,23,26,33], shape optimization [1,5,12,14,25,28,29,38,63], stochastic
problems [46,57], viability and invariance [27,34,60]. Several models exist: Cartesian squares, metric measure spaces
[2,3,22,39–41]..., mutational spaces [5,6,27–29]... and their variants [20,49]... with various purposes.

The sole metric structure on a set enables one to introduce some analysis concepts, in particular convexity notions.
Whereas the analogies with what occurs on normed vector spaces is alluring, in some cases the results are surprising.
For instance, in the Heisenberg group endowed with the so-called Carnot–Heisenberg distance, geodetically convex
functions are constant [47].
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Our aim here is to introduce a notion of a tangent cone to a metric space and a notion of a tangent map to a map
between metric spaces. Such notions enable one to obtain information about the local behaviors of sets and maps. Our
constructions are simple and not too restrictive; they rely on an appropriate selection of arcs. They do not require local
compactness of the space, a restriction which is not natural for differential calculus. They allow us to state optimality
conditions and they open the way to the study of dynamical systems. We make a short comparison with some other
concepts, in particular with the notion of a mutational space [6,33], which has been our starting point. Our aim can
be seen as an effort to get rid of uniform estimates while concentrating on simpler conditions. As in [6,58,59], our
main motivations are the studies of the space C of bounded closed convex subsets of a normed vector space E and of
the space K of compact subsets of E , both endowed with the Pompeiu–Hausdorff distance. Such spaces can serve as
basic models for shape optimization and image reconstruction.

2. Concepts and examples

In the sequel, an arc of a metric space (X, d) is a (not necessarily continuous) map from an interval I := [0, θ] of
R (for some θ > 0) into X;. Without loss of generality, we can extend it to R+ by taking it as constant on [θ, +∞[.
The whole family of continuous arcs of X is too large in general for calculus purposes (think of the Peano curve).
Therefore, we are led to choose a selection of this family in requiring some conditions in order to detect arcs which
are regular enough. The condition we impose means that the triangular inequality along the arc is approximately an
equality, making it an approximate geodesic.

Definition 1. An arc c : R+ → X of a metric space (X, d) is said to be (initially) rhythmed if the limit of
t−1d(c(t), c(0)) exists as t → 0+. It is called a cadence if it is rhythmed and if for any a ∈ R+ one has

lim
(s,t)→(a,0+)

1
t

d(c(st), c(t)) = |a − 1| lim
t→0+

1
t

d(c(t), c(0)). (1)

In this definition, it is enough to suppose a ∈ [0, 1], as easily seen.

Example. Let X be a subset of a normed vector space and let c : R+ → X be such that the right derivative
c′
+(0) := limt→0+

(1/t)(c(t) − c(0)) exists. Then c is a cadence: setting q(t) := (1/t)(c(t) − c(0)), we have
(1/t)d(c(t), c(0)) →

∥∥c′
+(0)

∥∥ as t → 0+ and

1
t

‖c(st) − c(t)‖ = ‖sq(st) − q(t)‖ →
∥∥ac′

+(0) − c′
+(0)

∥∥ = |a − 1|
∥∥c′

+(0)
∥∥ as (s, t) → (a, 0+).

Example. Let (X, d) be a metric space. Suppose c | [0, θ] is a metric segment, i.e. that d(c(r), c(t)) = d(c(r), c(s))+
d(c(s), c(t)) for 0 ≤ r ≤ s ≤ t ≤ θ. Then, if it is rhythmed, it is a cadence. In order to see that, let us denote by ` the
limit of s−1d(c(s), c(0)) as s → 0+. Then, for a ∈ (0, 1), we have, for s > 0 close enough to a

1
t

d(c(st), c(t)) =
1
t

d(c(0), c(t)) −
s
st

d(c(0), c(st)) → ` − a`

as (s, t) → (a, 0+); for a = 0 relation (1) also holds. For a ≥ 1 we use the relation

1
t

d(c(st), c(t)) =
s
st

d(c(0), c(st)) −
1
t

d(c(0), c(t)) → a` − `

when s ≥ 1. Now if c is continuous and parametrized by arc length it is rhythmed: setting ` := d(c(0), c(θ)), for any
n ∈ N \ {0} and any r ∈ {2−nkθ : k ∈ N, k ≤ 2n

}, one has d(c(r), c(0)) = r`, so that, by density, this relation also
holds for r ∈ [0, θ]. Metric segments are much used in hyperbolic metric spaces; see [61] and its references. �

The definition we have adopted keeps part of the properties of metric segments in order to select not too wild arcs.
More precisely, if c : [0, θ] → X is a cadence, then c is approximately a metric segment, in the sense that for any
a ∈ (0, 1), there exists some function µ : R+ → R+ satisfying limt→0 µ(t) = 0 such that

d(c(0), c(t)) = d(c(0), c(at)) + d(c(at), c(t)) − tµ(t)
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for t ∈ [0, θ]. In fact, setting k := limt→0+
d(c(t), c(0))/t , one has d(c(at), c(t))/t → (1 − a)k as t → 0+, hence

1
t

(d(c(0), c(at)) + d(c(at), c(t))) → ak + (1 − a)k = lim
t→0+

1
t

d(c(0), c(t)),

so that one can take µ(t) := (1/t)[d(c(0), c(at)) + d(c(at), c(t)) − d(c(0), c(t))].

Example. If c is a geodesic of a Riemannian manifold, then, for some θ > 0 small enough, c | [0, θ] is a metric
segment, and hence is a cadence.

Example. Let (X, d) be a metric space which is also a topological manifold satisfying the following condition: for
every x ∈ X , there exist a normed vector space E , an open neighborhood U of 0 in E , and a homeomorphism
ϕ : U → V from U onto a neighborhood V of x such that for any ε > 0, there exist ρ > 0 with B(0, ρ) ⊂ U for
which

∀u, u′
∈ B(0, ρ) (1 − ε)

∥∥u − u′
∥∥ ≤ d(ϕ(u), ϕ(u′)) ≤ (1 + ε)

∥∥u − u′
∥∥ .

Then, one can check that for any e ∈ E , the arc c : t 7→ ϕ(te) is a cadence issued from x .

Example. In exotic metric spaces, cadences may be scarce. In particular, if (X, d) is an ultrametric space, i.e. a
metric space such that for any x, x ′, x ′′

∈ X one has d(x, x ′′) ≤ max(d(x, x ′), d(x ′, x ′′)), then every cadence c is
almost constant, in the sense that d(c(t), c(0)) = tε(t) with ε(t) → 0 as t → 0. In fact, if α := lim supt→0+

ε(t) is
positive, and if a ∈ (0, 1] one has d(c(st), c(0)) < d(c(t), c(0)) for s, t > 0 small enough, so that, by a well known
property of ultrametric spaces, d(c(st), c(t)) = d(c(t), c(0)) = tε(t) and condition (1) implies that α = |1 − a| α, a
contradiction.

Example. Suppose there exists a family (hv)v∈V of semi-groups hv : R+ × X → X on a metric space (X, d),
parametrized by a normed vector space (V, ‖·‖) in such a way that for some x ∈ X , one has

∀v ∈ V
1
t

d(hv(t, x), x) → ‖v‖ as t → 0+, (2)

∀v ∈ V, ∀t ∈ R+, ∀x, x ′
∈ X d(hv(t, x), hv(t, x ′)) = d(x, x ′). (3)

Recall that h : R+ × X → X is a semi-group if h(0, ·) is the identity mapping and if for any r, s ∈ R+, one
has h(s, h(r, ·)) = h(r + s, ·). Then, for each v ∈ V , the arc c : R+ → X given by c(t) := hv(t, x) is a cadence.
Assumption (2) ensures that c is rhythmed. Now, since hv is a semi-group, and since by (3) hv(r, ·) preserves distances
for every v ∈ V , r ∈ R+, we have for a ∈ [0, 1], s ∈ [0, 1), t ∈ R+:

1
t

d(c(t), c(st)) =
1
t

d(hv(st, hv(t − ts, x)), hv(st, x))

=
1 − s
t − st

d(hv(t − ts, x), x) → (1 − a) ‖v‖ as (s, t) → (a, 0+).

In [16], some classical group actions satisfying assumptions similar to (2) and (3) (among others) are studied, giving
to some homogeneous spaces a structure of mutational space in the sense of [6]. �

Now let us turn to an attempt to define a kind of tangent space. We first observe that if c1, c2 are two arcs of X such
that d(c1(s), c2(s))/s → 0 as s → 0+, and if c1 is rhythmed, then c2 is rhythmed; if c1 is a cadence, then c2 is also a
cadence: setting ε(s) := d(c1(s), c2(s))/s one has: (1/t)d(c2(t), c2(0)) → limt→0+

(1/t)d(c1(t), c1(0)) and

|d(c2(st), c2(t)) − d(c1(st), c1(t))| ≤ stε(st) + tε(t),

so that condition (1) is satisfied.

Definition 2. A (virtual) velocity, or (virtual) tangent vector, of a metric space (X, d) at x ∈ X is an equivalence class
of cadences c : R+ → X such that c(0) = x for the relation

c1 ' c2 iff d(c1(s), c2(s))/s → 0 as s → 0+.

A whizz at x of a metric space (X, d) is an equivalence class of rhythmed arcs issued from x .
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We denote by V (X, x) or Vx X the set of velocities of (X, d) at x ∈ X , and by W (X, x) the set of whizz of (X, d)

at x ∈ X . If c : R+ → X is a cadence such that c(0) = x , we denote by vc (or c′(0) if there is no risk of confusion)
its class in the preceding relation.

The sets V (X, x) and W (X, x) can be given a cone structure by setting, for v ∈ W (X, x) and λ ∈ R+:

λv := (cλ)
′(0)

where c : R+ → X is a representant of v (i.e. c′(0) = v) and cλ : R+ → X is given by cλ(t) := c(λt). It is easy
to check that λv does not depend on the choice of c in the class v. We denote by 0 the class of the constant arc with
value x which is clearly a cadence. Moreover, one has

(λµ)v = λ(µv) ∀λ, µ ∈ R+, ∀v ∈ V (X, x).

We set

‖v‖ = lim
t→0+

1
t

d(c(t), c(0)),

where c is a representant of v; (this definition does not depend on the choice of a representant). Moreover, for
v1, v2 ∈ W (X, x), we can set

dW (v1, v2) = lim sup
t→0+

1
t

d(c1(t), c2(t)),

where ci is a representant of vi for i = 1, 2, since the limsup does not depend on the choices of such representants.
The proof of the following result is easy.

Lemma 3. For u, v, w ∈ W (X, x), λ ∈ R+, one has:

‖v‖ = dW (v, 0),

dW (u, v) = 0 ⇐⇒ u = v,

dW (u, w) ≤ dW (u, v) + dW (v, w),

‖λv‖ = λ ‖v‖ .

Now let us turn to the study of maps between metric spaces.
In the following definition, we say that a mapping f : X → Y between two metric spaces is stable at x ∈ X (or is

Stepanoff at x [31]) if there is some k ∈ R+ and a neighborhood V of x in X such that dY ( f (v), f (x)) ≤ kdX (v, x)

for each v ∈ V . The infimum of such constants is called the stability rate of f at x .

Definition 4. A mapping f : X → Y between two metric spaces is said to be rhythmed at x ∈ X if it is stable at x ,
and if for each rhythmed arc c : R+ → X such that c(0) = x the arc f ◦ c is rhythmed.

The mapping f is said to be cadenced at x ∈ X if it is stable at x and if for each cadence c : R+ → X such
that c(0) = x the arc f ◦ c is a cadence, and if f ◦ c1 ' f ◦ c2 whenever c1 and c2 are two cadences such that
c1 ' c2 and c1(0) = c2(0). Then the cadence-derivative of f at x is the map f ′

x : V (X, x) → V (Y, f (x)) given by
v 7→ ( f ◦ c)′(0), where c is a representant of v.

In such a case, one has
∥∥ f ′

x (v)
∥∥ ≤ k ‖v‖, where k is a stability rate of f around x . Note that the condition

f ◦ c1 ' f ◦ c2 whenever c1 and c2 are two cadences such that c1 ' c2 and c1(0) = c2(0) is automatically satisfied
when f is locally Lipschitzian around x .

Remark. The proof of Proposition 8 below shows that when X is an open subset of some Euclidean space, an arc
c : R+ → X is a cadence if, and only if, the right derivative of c at zero exists. It follows that the preceding definition
is compatible with Definition 1: an arc f : R+ → Y of a metric space is a cadence if, and only if, it is cadenced in the
sense of the preceding definition.

Similarly, a function f : X → R is cadenced at x ∈ X if, and only if, it is stable at x and such that for each cadence
c of X with c(0) = x , the function f ◦ c is right differentiable at 0, its right derivative being independent of the choice
of c in its class. �
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The following proposition is an obvious consequence of the definitions.

Proposition 5. Let f : X → Y and g : Y → Z be mappings between metric spaces. Suppose f is rhythmed (resp.
cadenced) at x ∈ X and g is rhythmed (resp. cadenced) at f (x). Then h := g ◦ f is rhythmed (resp. cadenced) at x
and

h′
x = g′

f (x) ◦ f ′
x .

The preceding notions enable us to give an optimality condition.

Proposition 6 (Fermat’s Rule). Suppose f : X → R is rhythmed (resp. cadenced) at x ∈ X and attains a local
minimum at x. Then, for any whizz w ∈ W (X, x) (resp. velocity v ∈ V (X, x)), one has f ′

x (w) ≥ 0 (resp. f ′
x (v) ≥ 0).

Proof. Given w ∈ W (X, x) and a rhythmed arc c with whizz w := wc, one has f (c(t)) ≥ f (x) for t > 0 small
enough, since c(t) → x as t → 0. It follows that ( f ◦ c)′(0) ≥ 0. Thus, f ′

x (w) = ( f ◦ c)′(0) ≥ 0. �

When X is a subset of a normed vector space E , the preceding result is better than the classical Fermat’s rule
[7, Theorem 6.1.9], since W (X, x) (or even V (X, x)) may be larger than the incident tangent cone to X at x (see
Lemma 7 below).

Example. Let E be an arbitrary normed vector space of infinite dimension. Given a sequence (en) of unit vectors of
E without any cluster points, let f : E → R be given by f (en/n) = −1/n, f (x) = 0 for x ∈ X \ {en/n : n ≥ 1}.
The arc c : [0, 1] → E given by c(0) = 0, c(t) = en+1/(n + 1) for t ∈ (1/(n + 1), 1/n] is easily seen to be rhythmed
and if w is its whizz, one has f ′

x (w) = −1, so that 0 is not a local minimizer of f . Such a fact cannot be detected by
using tangent vectors to E at 0 as in the classical Fermat’s rule.

3. Some basic constructions

Let us consider now some familiar constructions for metric spaces and examine their infinitesimal counterparts.
First, if d ′ is a metric deduced from a metric d on X by d ′

:= j◦d, where j : R+ → R+ is an increasing subadditive
map satisfying j (0) = 0 and if j has a non null derivative at 0, then an arc c of (X, d) is rythmed (resp. is a cadence)
if, and only if, it is rythmed (resp. a cadence) in (X, d ′). Thus, taking j (t) := min(t, 1) or j (t) = t/(t + 1), one can
reduce the study to bounded metric spaces. Clearly, the tangent sets to (X, d) and (X, d ′) at any point coincide.

If X is a subset of a metric space (W, dW ), and if X is endowed with the induced metric d, then it is clear that an
arc c of X is rhythmed (resp. a cadence) if and only if it is rhythmed (resp. a cadence) in (W, dW ). Thus, the tangent
set to X at any x ∈ X can be considered as a subset of the tangent set to W at x , and the canonical injection j of
X into W is cadenced at each point. If x is an interior point to W, then j ′x is a bijection between the tangent spaces
V (X, x) and V (W, x).

If X is a quotient of a metric space (W, dW ), and if the equivalent classes are closed and such that for any u, v in
the same class and any class C of W one has dW (u, C) = dW (v, C), where dW (u, C) := inf{dW (u, w) : w ∈ C}, then
X can be endowed with a metric d by setting d(x, x ′) := dW (w, C ′), where w ∈ p−1(x), C ′

:= p−1(x ′), p : W → X
being the canonical projection. Then, if c is an arc of (X, d) which is rythmed, one can find an arc b of (W, dW )

which is rythmed and such that c = p ◦ b. However, if c is a cadence, the existence of a cadence b of (W, dW ) is not
guaranteed in general.

Now suppose X is the product of two metric spaces (V, dV ) and (W, dW ), and that its metric is given by
d = γ ◦ (dV , dW ), where γ : R2

+ → R is a map null at (0, 0) and such that for any (r, s) ∈ R2
+ the directional

derivative

γ ′((0, 0); (r, s)) := lim
(t,r ′,s′)→(0+,r,s)

γ (tr ′, ts′)/t

exists. Such assumptions are satisfied in the classical cases

γ1(r, s) := r + s, γp(r, s) := (r p
+ s p)1/p, γ∞(r, s) := max(r, s).
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Then if a and b are rythmed arcs (resp. cadences) in (V, dV ) and (W, dW ) respectively, it is easy to show that the arc
c := (a, b) is rythmed (resp. a cadence) in (X, dX ). Thus, the tangent set to (X, d) at x := (v, w) contains the product
of the tangent sets to (V, dV ) and (W, dW ) at v and w respectively.

Let us return to the case of embeddings. In the following lemma, assuming that X is a subset of a normed vector
space E , we compare V (X, x) with the cone T i (X, x) of incident vectors (or adjacent vectors in the terminology
of [7]) to X at x . Recall that T i (X, x) is the set of vectors v ∈ E such that d(x + tv, X)/t → 0 as t → 0+.

Lemma 7. Suppose X is a subset of some normed vector space (E, ‖·‖) and is endowed with the induced metric.
Then, for each x ∈ X, there exists an injection jx of the set T i (X, x) of incident vectors to X at x into V (X, x). It is
even an isometric embedding.

Proof. For any v ∈ T i (X, x), one can find an arc c : [0, 1] → X such that c(0) = x , (1/t)(c(t) − c(0)) → v as
t → 0+ : it suffices to c(t) ∈ X ∩ B(x + tv, d(t) + t2), where d(t) := d(x + tv, X). By an observation made above,
t 7→ x + tv being a cadence of E , c is a cadence of E , and hence a cadence of X . If c : [0, 1] → X is another arc such
that c(0) = x , c′(0) = v, we obviously have c ' c, so that we have a well defined map jx : T i (X, x) → V (X, x). In
order to prove that jx is injective, it suffices to show that it is an isometric embedding. Let v1, v2 ∈ T i (X, x). There
exist arcs c1, c2 : [0, 1] → X such that ci (0) = x, c′

i (0) = vi for i = 1, 2. Then

‖v1 − v2‖ =

∥∥∥∥ lim
s→0+

s−1(c1(s) − x) − lim
s→0+

s−1(c2(s) − x)

∥∥∥∥
= lim

s→0+

s−1
‖c1(s) − c2(s)‖ = dW ( jx (v1), jx (v2)). �

Proposition 8. Let X be a subset of some Euclidean space E. Then the embedding of the set T i (X, x) of incident
vectors to X at x into V (X, x) is an isometric embedding onto V (X, x).

Proof. Let c be a cadence of X such that c(0) = x , and let vc be its class. Let us prove that (1/t)(c(t) − c(0)) has a
limit as t → 0+. Then this limit v is an element of T i (X, x), and its image by jx in V (X, x) will be vc by definition
of jx . Let r := limt→0+

d(c(t), c(0))/t . Since the sphere S(0, r) := {u ∈ E : ‖u‖ = r} is compact, it is enough
to show that if v and w are two cluster points of (1/t)(c(t) − c(0)) as t → 0+, then v = w. Let (sn) and (tn) be
two sequences with limit 0 such that (c(sn)/sn) → v and (c(tn)/tn) → w. Taking subsequences if necessary, we
may suppose (an) := (sn/tn) has a limit a ∈ R+ ∪ {∞}. Interchanging the roles of (sn) and (tn), we may suppose
a ∈ [0, 1]. Then, by (1), we have

‖av − w‖ = lim
n

∥∥∥∥ sn

tn

c(sn) − c(0)

sn
−

c(tn) − c(0)

tn

∥∥∥∥ = lim
n

1
tn

‖c(an tn) − c(tn)‖

= (1 − a) lim
t→0+

1
t

d(c(t), c(0)) = (1 − a)r.

Thus ‖av − w‖
2

= (1−2a+a2)r2, while an expansion using the scalar product gives ‖av − w‖
2

= a2 ‖v‖
2
−2a(v |

w) + ‖w‖
2

= a2r2
− 2a(v | w) + r2. It follows that (v | w) = r2, and hence w = v since ‖v‖ = ‖w‖ = r. �

4. Spaces of subsets

The following concrete example is part of our motivation.
Let E be a normed vector space (n.v.s.) and let X be the set C of nonempty bounded closed convex subsets of E

equipped with the Pompeiu–Hausdorff distance d defined by

d(A, B) := max(e(A, B), e(B, A)) for A, B ∈ X , where
e(A, B) := sup

a∈A
d(a, B).

For a subset F of E , let hF be the support function of F given by

hF (u∗) := sup{〈u∗, x〉 : x ∈ F} u∗
∈ U∗,
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where U∗ is the closed unit ball of the dual E∗ of E . Given A, B ∈ X , let C : [0, 1] → X be given by

C(t) := (1 − t)A + t B.

Since Hörmander’s theorem ([21, Thm II-18]) asserts that for any A, B ∈ X , one has

d(A, B) = sup
u∗∈U∗

∣∣h A(u∗) − hB(u∗)
∣∣ ,

and since hC(t) = (1 − t)h A + thB , for s ∈ (0, 1) and s = 0, we get that

d(C(st), C(t)) = sup
u∗∈U∗

∣∣(1 − st)h A(u∗) + sthB(u∗) − (1 − t)h A(u∗) − thB(u∗)
∣∣

= |1 − s| t sup
u∗∈U∗

∣∣h A(u∗) − hB(u∗)
∣∣ = |1 − s| td(A, B),

d(C(0), C(t)) = td(A, B).

Thus, d(C(st), C(t)) = |1 − s| d(C(0), C(t)), and C is a cadence. In fact, since the Hörmander mapping h : F 7→ hF
maps X isometrically into the space H of positively homogeneous continuous functions on the unit ball of the dual
space E∗ endowed with the norm of uniform convergence, and since t 7→ hC(t) is an affine segment, we see that C is
a metric segment.

Lemma 7 shows that the velocity V (X , A) is rich enough, since it contains the image of the set T i (h(X ), h(A)) in
H. The latter contains the set {hB − h A : B ∈ X }, which are the initial velocities of the curves t 7→ h(1−t)A+t B .

Now, let X be the set K of nonempty compact subsets of E endowed with the Hausdorff–Pompeiu metric. Let
BC(E, R) be the set of bounded continuous functions on E endowed with the norm of uniform convergence. The
map j : K → BC(E, R) given by j (A)(e) = dA(e) − ‖e‖ being an embedding of K, it may give rise to a set of
velocities which is rich enough. Another means to get velocities consists in assuming that A is regular enough to admit
deformations ht : A → X for t ∈ [0, 1] such that h0 = IA, the identity mapping of A, and that for each a ∈ A, the
derivative v(a) = lim(t,x)→(0+,a)(1/t)(ht (x) − x) exists, is a continuous function of a, and is normal to A at a. In
such a case, for each a ∈ A one has dA(ht (a)) = t (‖v(a)‖ + εa(t)) with εa(t) → 0 as t → 0. Setting C(t) := ht (A),
we obtain a rhythmed arc of K. In fact,

lim inf
t→0+

1
t

d(C(t), C(0)) ≥ lim inf
t→0+

sup
a∈A

1
t

d(ht (a), A)

≥ sup
a∈A

sup
τ>0

inf
t∈(0,τ )

1
t

d(ht (a), A)

= sup
a∈A

‖v(a)‖ .

On the other hand, if (tn), (an) are sequences of (0, 1] and A respectively such that

lim sup
t→0+

1
t

d(C(t), C(0)) = lim
n

1
tn

d(htn (an), A), or lim
n

1
tn

d(an, htn (A))

taking a subsequence of (an) which converges to some a ∈ A, and relabelling it, we deduce from our assumptions
that

lim sup
t→0+

1
t

d(C(t), C(0)) = lim
n

1
tn

d(htn (an), A) ≤ lim
n

1
tn

∥∥htn (an) − an
∥∥ = ‖v(a)‖ ,

so that

lim sup
t→0+

1
t

d(C(t), C(0)) ≤ sup
a∈A

‖v(a)‖

and (1/t)d(C(t), C(0)) has a limit. Another possible means to get rhythmed arcs of K is to take enlargements, as
in [56]. The enlargements of a subset A of X are defined by Ar := {x ∈ X : dA(x) ≤ r} for r ∈ R+. The intermediate
value theorem ensures that d(Ar , A) = r , so that C : R+ → X for X = C or X = K given by C(t) = At .
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Moreover, since d(C(st), C(t)) = t − st by [56, Lemma 29 (b)], we see that C is a cadence. On the other hand, the
ε-regularization A(ε) of A as defined in [45] is a curve of X which may satisfy d(A(ε), A) = 0 or d(A(ε), A) = +∞.

5. Comparisons and open questions

An important stream of results has recently appeared with the study of measure-theoretic definitions of a tangent
space. In particular, a tangent space to a locally compact doubling metric space can be defined as a limit in the
Gromov–Hausdorff distance of a parametrized family of metric spaces (see [4,37,40, 2.12] and the references therein).
Such a tangent space is not unique. A comparison with our set of velocities is not obvious, because here we do not
assume local compactness or the existence of a doubling measure. A junction of the two approaches would be of
interest.

The main drawback of the preceding notions consists in the impossibility of comparing or relating the sets of
velocities to X at different points. When using an isometric embedding e : X → E of X into a Banach space E , one
gets subsets T i (e(X), e(x)) of E which can be related. However, without additional assumptions, it is not clear that
one has invariance under different embeddings of X into a Banach space of the incident cones to the images. Thus,
one is led to look for canonical embeddings. Besides special embeddings such as the ones we have considered in the
section devoted to power sets, the Banach, the Fréchet and the Urysohn embeddings which are limited to separable
metric spaces, there is a general class of embeddings, known as the Kuratowski class, which can be used. In order to
describe this class, for y ∈ X , let us denote by dy the function d(·, y), and let us introduce the space E := BC(X)

of bounded continuous functions on X , which is a Banach space when endowed with the norm ‖·‖∞ of uniform
convergence. Given y ∈ X , let ey : X → E be the mapping given by

ey(x)(·) := dx (·) − dy(·).

It is easy to show that the mapping ey : x 7→ ey(x) is an isometric embedding of (X, d) into (E, ‖·‖∞). Given two
points y, z of X , the mapping ez is obtained from the mapping ey by a translation:

ez(x)(w) = ey(x)(w) + dy(w) − dz(w) w, x ∈ X,

or ez(x) = ey(x) + hy,z for x ∈ X , where hy,z := dy − dz is an element of E independent of x . It follows that
ez(X) = ey(X) + hy,z

T i (ez(X), ez(x)) = T i (ey(X), ey(x)) ∀x ∈ X.

In the sequel, we fix z ∈ X and we consider T i (ex (X), 0) = T i (ex (X), ex (x)) = T i (ez(X), ez(x)) as a subset of
V (X, x) using the isometric embedding of Lemma 7.

Proposition 9. Let w be a vector field on a complete metric space X, i.e. the data for each x ∈ X of an element w(x)

of V (X, x). Suppose that for each x ∈ X, one has w(x) ∈ T i (ez(X), ez(x)) and that w is locally Lipschitzian from
X into E. Then, for any x0 ∈ X, there exists a cadence c of X satisfying c(0) = x0 and c′

+(t) = w(c(t)).

More precisely, one can assert the existence of an arc c : [0, θ) → X such that for each t ∈ [0, θ), the arc
ct : [0, θ − t) → X given by ct (s) := c(s + t) is a cadence and (ct )

′(0) = w(c(t)). The abuse of notation used
in the last equality of the statement is justified by the fact that c can be considered as an arc of ez(X) which is right
differentiable and whose right derivative c′

+(t) at t corresponds to w(c(t)) when embedding T i (ez(X), ez(c(t))) into
V (X, c(t)).

Proof. We may identify X with ez(X). Then we apply the classical Nagumo–Brezis invariance theorem for vector
fields which are tangent to a closed subset. �

Another means to relate the sets of velocities to a metric space (X, d) at different points is to select a class of
homotopies of X , i.e. a class of continuous maps h : X × [0, 1] → X such that h(x, 0) = x for each x ∈ X .
Such an approach is adopted in [5,6,20] and in the works using mutational spaces. Let us note, however, that in
such contributions the arcs t 7→ h(x, t) are not supposed to be cadences (nor even rhythmed); on the other hand,
strong uniform estimates are required. It would be interesting to study whether some compromises between the two
frameworks would bring new results.

Finally, let us take a step towards one of the earliest devices to get calculus results in metric spaces.
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Definition 10. Let (X, d) be a metric space and let f : X → R be cadenced at x ∈ X . Then the slope of f at x in the
direction v ∈ V (X, x) is |∇v| ( f ) := max(− f ′

x (v), 0).

The directional slope of f at x is |∇| ( f )(x) := sup{|∇v| ( f ) : v ∈ V (X, x), ‖v‖ = 1}.

Recall that the (strong) slope of f at x is defined by

‖∇‖ ( f )(x) := lim sup
x ′(6=x)→x

max( f (x) − f (x ′), 0)

d(x, x ′)
.

Such a notion has been used with much success for dealing with the existence of curves satisfying decrease properties,
error bounds estimates and metric regularity (see [8–11,23,24] and their references). The following comparison is easy.

Proposition 11. Let (X, d) be a metric space and let f : X → R be cadenced at x ∈ X. Then the directional slope
of f at x is majorized by the slope of f at x :

|∇| ( f )(x) ≤ ‖∇‖ ( f )(x).

Proof. Given v ∈ V (X, x), ‖v‖ = 1 and a representant c of v, we have d(c(t), c(0))/t → 1 as t → 0+. Therefore

|∇v| ( f ) = max
(

− lim
t→0+

f (c(t)) − f (c(0))

t
, 0

)
= lim

t→0+

1
t

max( f (x) − f (c(t)), 0)

≤ lim sup
x ′(6=x)→x

max( f (x) − f (x ′), 0)

d(x, x ′)
= ‖∇‖ ( f )(x).

Taking the supremum over v ∈ V (X, x) satisfying ‖v‖ = 1, we get the required result. �

A consequence of the preceding inequality is that decrease results and metric regularity results can be obtained
with the help of the notion of directional slope. In particular, we dispose of the following Decrease Principle and Error
Bound Property.

Theorem 12 (Decrease Principle). Let f : X → R+ ∪ {+∞} be a nonnegative l.s.c. proper function on a complete
metric space X, and let S := {x ∈ X : f (x) = 0}. Suppose there are x ∈ dom f , c > 0 and r ∈ R+ ∪ {+∞} with
f (x) < cr such that |∇| ( f )(u) ≥ c for any u ∈ B(x, r) \ S. Then S is nonempty and

d(x, S) ≤ c−1 f (x).

In particular, if for some positive number c, one has |∇| ( f )(u) ≥ c for every u ∈ X \ S, then S is nonempty, and for
each x ∈ X one has

d(x, S) ≤ c−1 f (x). (4)

Proof. Since |∇| ( f )(·) ≤ ‖∇‖ ( f )(·), the assumption ensures that ‖∇‖ ( f )(u) ≥ c for any u ∈ B(x, r) \ S. Then the
conclusion follows from the Decrease Principle using the strong slope [8,9]. �
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